Энергоэффективные вентиляционные системы (DCV)

Технические характеристики

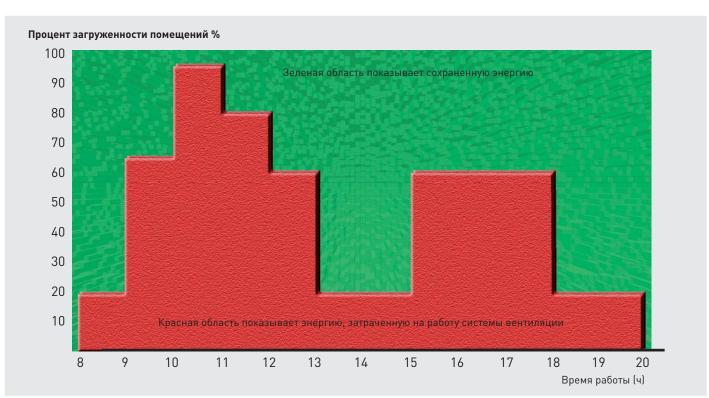
По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47 **К**азахстан (772)734-952-31 **Т**аджикистан (992)427-82-92-69

Эл. почта: spc@nt-rt.ru || Сайт: http://slp.nt-rt.ru/

ЭКОНОМИЯ ЭНЕРГИИ ДО 55%


(по сравнению с обычными системами вентиляции)

DCV - это энергоэффективные системы вентиляции S&P, которые регулируют производительность вентиляции в зависимости от текущей потребности. Многие помещения, в которых вентиляция рассчитана на присутствие максимального количества человек, периодически пустуют или в них находится меньшее количество человек, чем принималось при расчете. В таком случае не требуется полная производительность системы вентиляции. Используя энергоэффективные вентиляторы и различные элементы автоматики, мы можем выключить или снизить производительность вентиляции до минимальной, в то время когда она не требуется.

- Вентиляторы с электродвигателями постоянного тока
- Регуляторы скорости, преобразователи частоты, реле
- Датчики движения
- Датчики влажности, температуры или СО2
- Датчики давления
- Воздушные клапаны с приводами
- Вытяжные диффузоры двойного расхода

ПРИМЕР РАБОТЫ СИСТЕМЫ ВЫТЯЖНОЙ ВЕНТИЛЯЦИИ В ОФИСЕ

Как показывает практика, средняя загруженность офиса в течение дня не превышает 60% от расчетного количества человек. При этом система вентиляции в таком офисе рассчитывается на полное количество рабочих мест.

Рассмотрим пример: система вентиляции офисного помещения, об-

щее количество сотрудников 80 человек, расчетное количество воздуха на одного сотрудника 45 м³/ч.

На графике показана загруженность офиса в течении рабочего дня.

ЭНЕРГОЭФФЕКТИВНЫЕ ВЕНТИЛЯЦИОННЫЕ СИСТЕМЫ \mathbf{DCV}

ЭНЕРГИЯ ЗАТРАЧЕННАЯ ВЕНТИЛЯТОРАМИ				Трёхфазный вентилятор			
	Часы работы офиса	Процент загрузки офиса	Кол-во человек в офисе		Потребление энергии без DCV (Вт/ч)	Расход воздуха с системой DCV (м³/ч)	Потребление энергии с системой DCV (Вт/ч)
	8-9	20	16	3600	1100	720	220
	9-10	65	52	3600	1100	2340	715
	10-11	95	76	3600	1100	3420	1045
	11-12	80	64	3600	1100	2880	880
	12-13	60	48	3600	1100	2160	660
	13-14	20	16	3600	1100	720	220
	14-15	20	16	3600	1100	720	220
	15-16	60	48	3600	1100	2160	660
	16-17	60	48	3600	1100	2160	660
	17-18	60	48	3600	1100	2160	660
	18-19	20	16	3600	1100	720	220
	19-20	20	16	3600	1100	720	220
Дневное потребление энергии	(кВт)				13,2		6,38
Годовое потребление энергии ([кВт] из расчета 50) рабочих недел	16		3300		1595
Экономия энергии при использовании системы DCV (кВт)						1705	
Экономия (руб/год) из расчета 1 кВт = 3 руб *						5115	
Уменьшение выброса CO2 (кг/год) из расчета 1 кВт = 0,5 кг CO2						853	
Экономия (руб.) за цикл жизни системы вентиляции (10 лет)					51150		
Уменьшение выброса СО2 (кг) за цикл жизни системы вентиляции (10 лет)					8530		

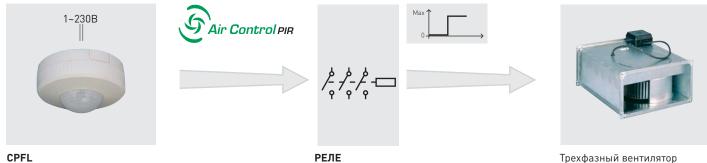
^{*} для расчета принята средняя стоимость электроэнергии.

ЭНЕРГИЯ НА ПОДОГРЕВ ВОЗДУХА

Месяц	Количество рабочих дней	Среднемесячная разница температур (°C)	Потребление энергии без системы DCV (кВт/ч)	Потребление энергии с системой DCV (кВт/ч)
Январь	16	27	32,4	15,6
Февраль	20	26	31,2	15,1
Март	21	20	24	11,6
Апрель	21	12	14,4	6,9
Май	21	5	6	2,9
Июнь	21	2	2,4	1,2
Июль	22	0	0	0
Август	23	2	2,4	1,2
Сентябрь	20	7	8,4	4,1
Октябрь	23	13	15,6	7,54
Ноябрь	22	20	24	11,6
Декабрь	21	24	28,8	13,9
Годовое п	Годовое потребление энергии (кВт)			22272
Экономия энергии при использ	23808			
Экономия (руб/год) при 1 кВт = 3	71424			
Уменьшение выброса CO2 (кг/г	11904			
Экономия (руб.) за цикл жизни о	714240			
Уменьшение выброса CO2 (кг) з	119040			

 $^{^{*}}$ для расчета принята средняя стоимость электроэнергии.

При реализации энергоэффективной системы вентиляции экономия за 10 лет работы системы составит до 765000~py6.



РЕГУЛИРОВАНИЕ ПРОИЗВОДИТЕЛЬНОСТИ ВЕНТИЛЯТОРА ПО СИГНАЛУ С ДАТЧИКА ДВИЖЕНИЯ

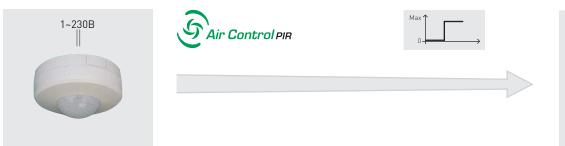
Присутствие человека в помещении активирует работу системы вентиляции.

ТИП ВКЛЮЧЕНО/ВЫКЛЮЧЕНО

Примеры: офисы или комнаты с периодическим использованием.

датчик движения

Трехфазный вентилятор


СИСТЕМА С ТРЕХФАЗНЫМ ВЕНТИЛЯТОРОМ

CPFL датчик движения

Однофазный вентилятор

СИСТЕМА С ОДНОФАЗНЫМ ВЕНТИЛЯТОРОМ

Вентилятор с двигателем постоянного тока

СИСТЕМА С ВЕНТИЛЯТОРОМ С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА

Принцип работы

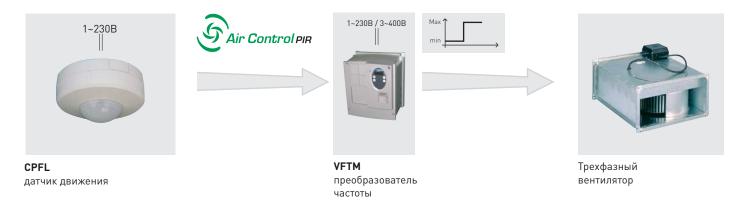
датчик движения

CPFL

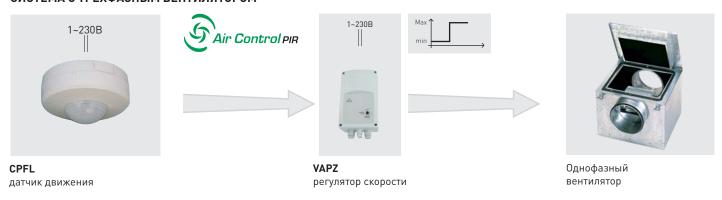
Датчик движения распознает присутствие человека в помещении и посылает сигнал на включение системы вентиляции. При отсутствии человека в помещении, система вентиляции выключается.

Преимущества

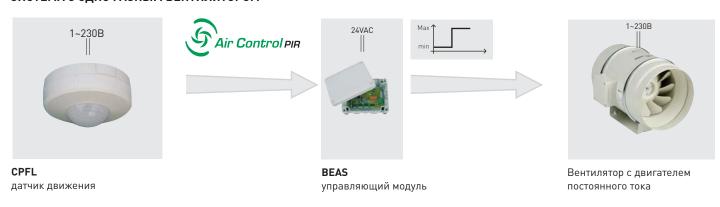
Вентиляция работает только в случае присутствия человека в помещении.


DCV

РЕГУЛИРОВАНИЕ ПРОИЗВОДИТЕЛЬНОСТИ ВЕНТИЛЯТОРА ПО СИГНАЛУ С ДАТЧИКА ДВИЖЕНИЯ


Присутствие человека в помещении увеличивает производительность системы вентиляции.

ТИП МИНИМУМ/МАКСИМУМ


Примеры: офисы или комнаты с периодическим использованием, где требуется постоянная минимальная вентиляция.

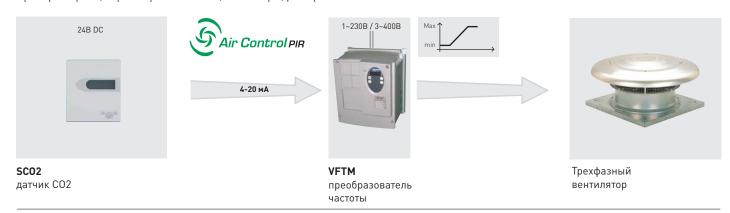
СИСТЕМА С ТРЕХФАЗНЫМ ВЕНТИЛЯТОРОМ

СИСТЕМА С ОДНОФАЗНЫМ ВЕНТИЛЯТОРОМ

СИСТЕМА С ВЕНТИЛЯТОРОМ С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА

Принцип работы

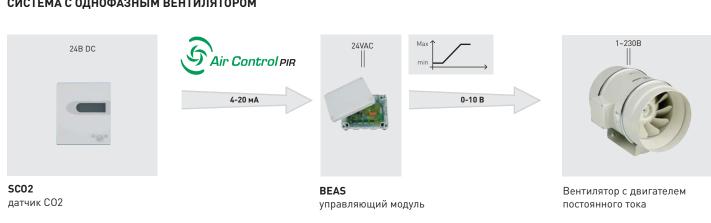
Система вентиляции включается вручную или по сигналу таймера и работает при минимальном расходе воздуха для проветривания помещения. Датчик движения распознает присутствие человека в помещении и посылает сигнал на регулятор скорости для увеличения расхода воздуха. При отсутствии человека в помещении, система вентиляции переходит на минимальную производительность.


Преимущества

Максимальное потребление энергии происходит только в случае присутствия человека в помещении.

РЕГУЛИРОВАНИЕ ПРОИЗВОДИТЕЛЬНОСТИ ВЕНТИЛЯТОРА ПО СИГНАЛУ С ДАТЧИКА СО2

ПРОПОРЦИОНАЛЬНЫЙ ТИП


Производительность вентиляции изменяется в соответствии с количеством человек в помещении (с уровнем СО2). Примеры: офисы, переговорные комнаты, кинотеатры, рестораны.

СИСТЕМА С ТРЕХФАЗНЫМ ВЕНТИЛЯТОРОМ

СИСТЕМА С ОДНОФАЗНЫМ ВЕНТИЛЯТОРОМ

СИСТЕМА С ВЕНТИЛЯТОРОМ С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА

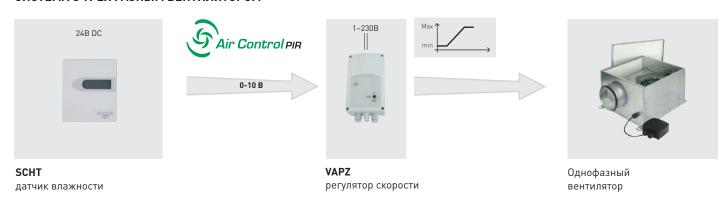
Принцип работы

Система вентиляции включается вручную или по сигналу таймера и работает при минимальном расходе воздуха для проветривания помещения. При увеличении количества человек в помещении, увеличивается уровень углекислого газа в воздухе, датчик СО2 посылает сигнал на регулятор скорости для увеличения производительности системы вентиляции. При понижении уровня углекислого газа в помещении, производительность

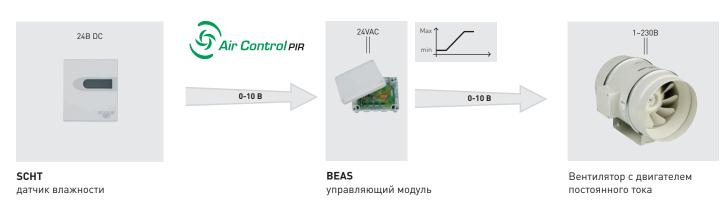
Преимущества

Производительность системы вентиляции изменяется в соответствии с количеством человек в помещении, полное потребление энергии при этом снижается.

DCV


РЕГУЛИРОВАНИЕ ПРОИЗВОДИТЕЛЬНОСТИ ВЕНТИЛЯТОРА ПО СИГНАЛУ С ДАТЧИКА ВЛАЖНОСТИ

ПРОПОРЦИОНАЛЬНЫЙ ТИП


Производительность вентиляции регулируется в соответствии с уровнем относительной влажности в помещении. Примеры: бани, бассейны, спортивные залы.

СИСТЕМА С ТРЕХФАЗНЫМ ВЕНТИЛЯТОРОМ

СИСТЕМА С ОДНОФАЗНЫМ ВЕНТИЛЯТОРОМ

СИСТЕМА С ВЕНТИЛЯТОРОМ С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА

Принцип работы

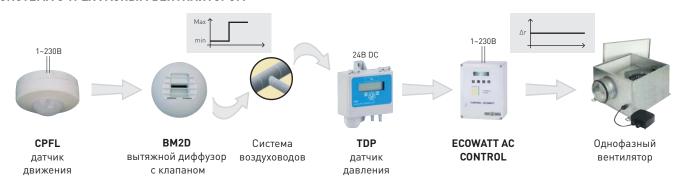
Система вентиляции включается вручную или по сигналу таймера и работает при минимальном расходе воздуха для проветривания помещения. При увеличении уровня относительной влажности в помещении, датчик влажности посылает сигнал на регулятор скорости для увеличения производительности системы вентиляции. При понижении уровня относительной влажности в помещении, производительность системы вентиляции снижается.

Преимущества

Производительность системы вентиляции изменяется в соответствии с уровнем влажности в помещении, полное потребление энергии при этом снижается.

DCV

РЕГУЛИРОВАНИЕ ПРОИЗВОДИТЕЛЬНОСТИ СИСТЕМЫ ВЕНТИЛЯЦИИ С ДАТЧИКАМИ ДВИЖЕНИЯ


ТИП МИНИМУМ/МАКСИМУМ

Принцип регулирования основан на поддержании постоянного давления в системе воздуховодов. Вентилятор подсоединяется к разветвленной системе воздуховодов с несколькими вытяжными диффузорами с клапанами, которые открываются или закрываются по сигналам с собственных датчиков движения.

Примеры: многокомнатные офисы, отели, коттеджи и т.д.

СИСТЕМА С ТРЕХФАЗНЫМ ВЕНТИЛЯТОРОМ

СИСТЕМА С ОДНОФАЗНЫМ ВЕНТИЛЯТОРОМ

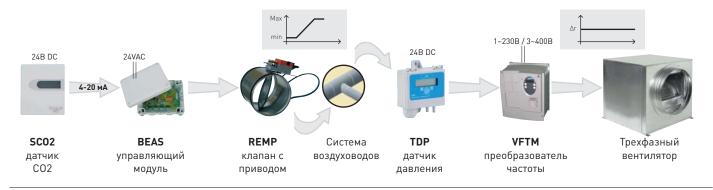
СИСТЕМА С ВЕНТИЛЯТОРОМ С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА

Принцип работы

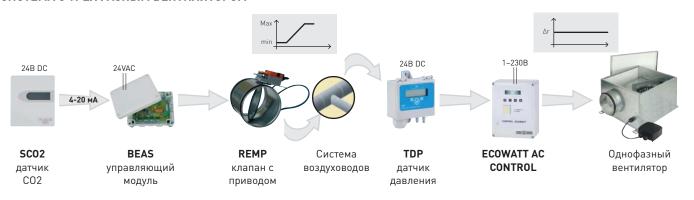
Система вентиляции рассчитывается на максимальное количество человек. Определяется давление в системе при максимальном расходе воздуха. Система вентиляции включается вручную или по сигналу таймера и работает при минимальном расходе воздуха для проветривания кажлого помещения

Датчик движения распознает присутствие человека в помещении и посылает сигнал на вытяжной диффузор с клапаном двойного расхода (мин./ макс.), который открывается на максимальный расход воздуха. При этом, происходит изменение давления в системе, которое улавливается датчиком давления. Датчик давления посылает сигнал на регулятор скорости для увеличения производительности вентилятора. Вышеперечисленные действия повторяются каждый раз при срабатывании датчиков движения в различных помещениях.

Преимущества


Производительность системы вентиляции изменяется в соответствии с присутствием людей в отдельных помещениях, полное потребление энергии при этом снижается.

DCV


РЕГУЛИРОВАНИЕ ПРОИЗВОДИТЕЛЬНОСТИ СИСТЕМЫ ВЕНТИЛЯЦИИ ПО СИГНАЛАМ С ДАТЧИКОВ СО2

ПРОПОРЦИОНАЛЬНЫЙ ТИП

Производительность вентиляции изменяется в соответствии с количеством человек в различных помещениях. Примеры: многокомнатные офисы, отели, рестораны и т.д.

СИСТЕМА С ТРЕХФАЗНЫМ ВЕНТИЛЯТОРОМ

СИСТЕМА С ОДНОФАЗНЫМ ВЕНТИЛЯТОРОМ

СИСТЕМА С ВЕНТИЛЯТОРОМ С ДВИГАТЕЛЕМ ПОСТОЯННОГО ТОКА

Принцип работы

Система вентиляции рассчитывается на максимальное количество человек. Определяется давление в системе при максимальном расходе воздуха. Система вентиляции включается вручную или по сигналу таймера и работает при минимальном расходе воздуха для проветривания каждого помещения.

При увеличении количества человек в отдельном помещении, увеличивается уровень углекислого газа в воздухе, датчик CO2 посылает сигнал на привод воздушного клапана, который открывается для увеличения расхода воздуха в помещении пропорционально уровню углекислого газа. При этом, происходит изменение давления в системе, которое улавливается датчиком давления. Датчик давления посылает сигнал на регулятор скорости для увеличения производительности вентилятора. Вышеперечисленные действия повторяются каждый раз при срабатывании датчиков CO2 в различных помещениях.

Преимущества

Производительность системы вентиляции изменяется в соответствии с количеством человек в каждом отдельном помещении, полное потребление энергии при этом снижается.

ЭЛЕМЕНТЫ СИСТЕМ АВТОМАТИКИ

ОДНОЗОНАЛЬНЫЕ СИСТЕМЫ

ГИП ВКЛЮЧЕНО / ВЫКЛЮЧЕНО		ТИП МИНИМУМ / МАК	СИМУМ	ПРОПОРЦИОНАЛЬНЫЙ ТИП			
Наименование	Модель	Наименование	Модель	Наименование (СО ₂)	Модель	Наименование (% или °C)	Модель
ОДНОФАЗНЫЙ ВЕН	тилятор	ОДНОФАЗНЫЙ ВЕНТИ	ІЛЯТОР	ОДНОФАЗНЫЙ ВЕНТИЛ	1ЯТОР	ОДНОФАЗНЫЙ ВЕН	тилятор
Датчик движения	CPFL	Таймер запуска	Опция	Таймер запуска	Опция	Таймер запуска	Опция
		Датчик движения	CPFL	Датчик СО ₂ (4-20мА)	SC02	Датчик влажн./темп. (0-10V)	SCHT
		Однофазный регул. скор.	VAPZ	Однофазный регул. скор.	VAPZ	Однофазный регул. скор.	VAPZ
ТРЕХФАЗНЫЙ ВЕНТ	гилятор	ТРЕХФАЗНЫЙ ВЕНТИ	ЛЯТОР	ТРЕХФАЗНЫЙ ВЕНТИЛ	ІЯТОР	ТРЕХФАЗНЫЙ ВЕН	ТИЛЯТОР
Датчик движения	CPFL	Таймер запуска	Опция	Таймер запуска	Опция	Таймер запуска	Опция
Реле	Опция	Датчик движения	CPFL	Датчик СО ₂ (4-20мА)	SC02	Датчик влажн./темп. (0-10V)	SCHT
		Преобразователь частоты	VFTM	Преобразователь частоты	VFTM	Преобразователь частоты	VFTM
ВЕНТИЛЯТОР ЕС	DWATT	ВЕНТИЛЯТОР ЕСОУ	VATT	ВЕНТИЛЯТОР ECOWA	ATT	ВЕНТИЛЯТОР ЕС	OWATT
Датчик движения	CPFL	Таймер запуска	Опция	Таймер запуска	Опция	Таймер запуска	Опция
		Датчик движения	CPFL	Датчик СО ₂ (4-20мА)	SC02	Датчик влажн./темп. (0-10V)	SCHT
		Управляющий модуль	BEAS	Управляющий модуль	BEAS	Управляющий модуль	BEAS
ПРИМЕНЕНИ	1E	ПРИМЕНЕНИЕ		ПРИМЕНЕНИЕ		ПРИМЕНЕН	1E
Люди присутствуют в помещении периодически, минимальная вентиляция в отсутствии людей не требуется.		Люди присутствуют в помещении периодически, требуется минимальная вентиляция в отсутствии людей для проветривания.		Количество человек в помещении изменяется в течении дня, расход воздуха увеличивается при увеличении концентрации ${\rm CO_2}$ в помещении.		Производительность системы вентиля- ции изменяется в соответствии с уровнем относительной влажности или температу- ры в помещении.	

МУЛЬТИЗОНАЛЬНЫЕ СИСТЕМЫ

ТИП МИНИМУМ / МАКСИМУМ		ПРОПОРЦИОНАЛЬНЫЙ ТИП СО2		
Наименование Модель		Hаименование (CO ₂)	Модель	
ОДНОФАЗНЫЙ ВЕНТИЛЯТОР		ОДНОФАЗНЫЙ ВЕНТИЛЯТО)P	
Таймер запуска	Опция	Таймер запуска	Опция	
Датчик движения	CPFL	Датчик CO ₂ (4-20мA)	SC02	
Воздушный клапан или вытяжной диффузор с при- водом	RMVT или BM2D	Управляющий модуль	BEAS	
Датчик давления	TDP	Воздушный клапан с приводом (пропорциональный)	REMP	
Блок управления	ECOWATT AC CONTROL	Датчик давления	TDP	
		Блок управления	ECOWATT AC CONTROL	
ТРЕХФАЗНЫЙ ВЕНТИЛЯТОР		ТРЕХФАЗНЫЙ ВЕНТИЛЯТО	P	
Таймер запуска	Опшия	Таймер запуска	Опшия	

ТРЕХФАЗНЫЙ ВЕНТИЛЯТОР		ТРЕХФАЗНЫЙ ВЕНТИЛЯТОР		
Таймер запуска	Опция	Таймер запуска	Опция	
Датчик движения	CPFL	Датчик CO ₂ (4-20мA)	SC02	
Воздушный клапан или вытяжной диффузор с при- водом	RMVT или BM2D	Управляющий модуль	BEAS	
Датчик давления	TDP	Воздушный клапан с приводом (пропорциональный)	REMP	
Преобразователь частоты	VFTM	Датчик давления	TDP	
		Преобразователь частоты	VFTM	

ВЕНТИЛЯТОР ECOWATT		ВЕНТИЛЯТОР ECOWATT		
Таймер запуска	Опция	Таймер запуска	Опция	
Датчик движения	CPFL	Датчик CO ₂ (4-20мA)	SC02	
Воздушный клапан или вытяжной диффузор с при- водом	RMVT или BM2D	Управляющий модуль	BEAS	
Датчик давления	TDP	Воздушный клапан с приводом (пропорциональный)	REMP	
Блок управления	ECOWATT DC CONTROL	Датчик давления	TDP	
		Блок управления	ECOWATT DC CONTROL	

ПРИМЕНЕНИЕ
Используется для многокомнатных помещений (офисов, квартир, коттеджей)
при временном пребывании людей в отдельных комнатах. В отсутствие
человека в помещении, осуществляется минимальная вентиляция для
проветривания.

ПРИМЕНЕНИЕИспользуется для многокомнатных помещений (офисов, квартир, коттеджей) при изменяемом во времени количестве человек в отдельных комнатах. Производительность системы вентиляции в каждой комнате изменяется в соответствии с уровнем CO₂.

По вопросам продаж и поддержки обращайтесь:

Архангельск (8182)63-90-72 Астана +7(7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395) 279-98-46

Казань (843)206-01-48
Калининград (4012)72-03-81
Калуга (4842)92-23-67
Кемерово (3842)65-04-62
Киров (8332)68-02-04
Краснодар (861)203-40-90
Красноярск (391)204-63-61
Курск (4712)77-13-04
Липецк (4742)52-20-81
Магнитогорск (3519)55-03-13
Москва (495)268-04-70
Мурманск (8152)59-64-93
Набережные Челны (8552)20-53-41
Нижний Новгород (831)429-08-12

Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Киргизия (996)312-96-26-47

Казахстан (772)734-952-31

Таджикистан (992)427-82-92-69

Эл. почта: spc@nt-rt.ru || Сайт: http://slp.nt-rt.ru/